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(Received March 2.1979) 

Chemical equilibrium laws are discussed within the framework of the grand canonical ensemble 
and for lattice models ofdilute solutions of aliphatic alcohols in a nonpolar solvent. A statistical 
interpretation of association constants in a lattice model and their connection with lattice model 
parameters are given and discussed. 

1 INTRODUCTION 

It is well known that properties of associated solutions can be successfully 
interpreted in terms of chemical equilibria between the complexes in solu- 
tion.’*’ In the course of our investigations on the dilute solutions of aliphatic 
alcohols3 we have discovered a surprising lack of values of association 
constants even for systems so widely investigated. In fact, almost all published 
values of equilibrium constants were obtained by fitting an assumed model of 
association to thermodynamic data. Therefore a theoretical evaluation and 
discussion of these quantities is needed and in this and following papers we 
examine what information can be extracted from the lattice models. 

Having considered a lattice model for solutions of aliphatic alcohols in 
nonpolar  solvent^,^ we discuss now the chemical equilibria between complexes. 
In particular, we show how the “chemical reactions” can be defined without 
introducing additional assumptions and how the equilibrium constants and 
the appropriate activities can be introduced in the statistical description of 
these systems without affecting the true value of partition function of the 
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68 J .  DUDOWICZ 

system. As a 6nal result we obtain a statistical interpretation of association 
constants in a latticemodel and their connection with latticemodel parameters 
which can be directly calculated. Some examples are given. 

2 GENERAL ASSUMPTIONS AND ASSOCIATION CONSTANTS 
IN A LAlTlCE MODEL 

Consider a dilute solution of associating substance A (aliphatic alcohol) in a 
nonpolar solvent S. The A and S molecules are distributed on a lattice of 
coordination number z, so that all lattice sites are occupied. The lattice is 
rigid and does not exert any pressure (p = 0, pV = 0). In the lattice model the 
continuous range of possible orientations of molecules is replaced by a 
number of discrete orientations and all molecules are supposed to have 
contact points ready to interact with contact points of nearest neighbour~.~ 
The total intermolecular potential energy is a sum of interactions of nearest 
neighbour lattice sites. Recently a possibility of nearest neighbour edge-edge 
interaction was also considered6 in a different context. 

Each molecule A is a r-mer occupying r lattice sites and having I, 0 and H 
contact points, each molecule S is a monomer with z I contact points, occupy- 
ing one lattice site. The associating substance A forms complexes Ai from i 
monomers A,. The chemical reactions can be written 

A ,  + A , - ,  ,I Ai Ki(i  = 2,3,4, ...) 
A ,  + ,- A ,  Kic(i = 3,4, .  . .) (1: 

where index c refers to cyclic complexes. 
A thermodynamic treatment in the theory of chemical association is based 

on the assumption that all associated complexes are in mutual equilibrium.’ 
This leads to the equality of the respective chemical potentials. 

p. = p. 
1 1 - 1  + Pl 

p. = p. 
IC 1 - 1  + Pl 

pk = p p  + R T  In a: 

(2: 

If 

the equilibrium constants 

k = 1,2,3,3c, .  . . 

can be related to p p ’ s  in a standard way.’ Here a: is the activity of complei 
A,, pp = the standard chemical potential of A, referred to the infinitr 
dilution, R = the gas constant, T = absolute temperature, i = number o 
molecules A I in one molecule A,. 
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EQUILIBRIUM IN DILUTE ASSOCIATED SOLUTIONS 69 

In the lattice models of solutions a concentration of the given chemical 
species Ak is usually represented by its dimensionless density4 pk 

where Nk is the number of molecules ofcomponent A,, and B = the number 
of lattice sites. 

The respective ratios of these densities are defined as the apparent associa- 
tion constants ( K j )  of reactions (1) 

(4) 
Pic  K. =- Pi 

1c K i  = - 
P i - l P l  ' P i - l P l  

As we dilute a solution, expressions (4) tend to the respective limiting values 
Ki" 

lim K .  J = Km = K," ( 5 )  
P A - 0  

K? are the trueassociation constants, equal to the thermodynamicequilibrium 
constants KF. 

3 STATISTICAL DERIVATION OF CHEMICAL EQUILIBRIUM 
CONSTANTS 

The physical cluster expansion for the thermodynamic properties of a 
reactive fluid, with a detailed attention for systems composed of monomers 
and dimers, was developed by Lawson and Dahler' who extended the earlier 
works of Hill et af.' Ebelingg generalised the Lawson's and Dahler's fugacity 
expansion, deriving in a statistical way the mass-action law for interacting 
gases and plasmas. 

In this section we discuss the chemical equilibrium laws for the lattice 
model of a solution of an aliphatic alcohol A in a nonpolar solvent S within 
the framework of the grand canonical ensemble. Our system is composed of 
succesive associated complexes At,  in quantities Nk, and of N ,  nonassociated 
molecules S,  occupying together B = N s  + c-4 rkNk lattice sites. Under the 
constraint of a constant B the modified grand canonical partition function E* 
is 

where Z is the nonmodified grand canonical partition function, Zs = the 
canonical partition function of the pure S lattice, Z({Nk},  B, T )  = the 
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70 J .  DUDOWICZ 

canonical partition function of the solution, divided by Z s ,  as implied by 
Eq. (6). Also 

where Ak and As are the absolute activities of complex A, and solvent S,  
respectively; connected with the chemical potentials pk and ps in the usual 
manner 

Ak = exp(bpk), AS = exp(bk), B = 

rk being the number of lattice sites occupied by the given complex Ak. 

number of Nk's different from zero, thus 
Formula (6) may be rewritten by grouping together terms according to the 

=* = 1 + p , a ,  + 1 1 Z,,alam + 
1 = 1  m = l  I = 1  

where the indexes I ,  rn refer to the chemical species present in the system and 

2, E Z(Nl = 1) (7) 

Z ( N ,  = 2) I = m  
Z(N, = 1, N, = 1) 1 # rn 

etc. 

z,, = 

and all other Nk are equal to zero. 
The expansion of In Z* is then obtained as follows 

1 
- In 5* = dlal + d2a2 + d,a, + d3ca3c + d,a4 + ...  
B + d11a: + dlzala, + d 1 3 ~ 1 ~ 3  + ... 

+ d, , , a i  + ... 
+ . . - .  

where 
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EQUILIBRIUM IN DILUTE ASSOCIATED SOLUTIONS 71 

Densities of the individual complexes A, can be obtained from the known 
relations' 

It follows immediately from Eqs. (8) and (10) that 

pk = dkak + x("')akal + .. '  
I =  1 

and in the limit of the infinite dilution 

pk = d k a k  (Pk + O )  

We introduce now the relative activities a: (or the individual associated 
complexes A,.) 

so that at infinite dilute solution they become equal to the respective densities 
(a: + pk when p A  + 0). Now we can use the particular form of the conditions 
of chemical equilibrium as given by Eqs. (2); hence 

a: akdk (12) 

a, = (al)' k = 2, 3, 3c, . . . 
Here idenotes the number of molecules A ,  in the complex A k ,  and 

Thus we have derived relations connecting association constants with 
quantities dk . The expressions for chemical equilibrium constants were 
obtained recently by Ebeling' who used a theory of clusters in a one com- 
ponent system. Our quantity dk corresponds to Ebeling's cluster coefficient 
b l k l  related to bound states of k molecules. His derivation is based on a 
division of each partition function into subsums corresponding to bound and 
to free states, and on the principle that bound states must be treated as 
composite molecules. Having treated ab initio our system as a multicomponent 
one we did not need to perform such divisions. On the contrary we can group 
certain terms together so as to recover the virial expansion for a one solute 
system. But, in any case an unequivocal definition as to which state in a system 
is called a dimer, which-a trimer and so on, is neccessary. Such definition is 
not always possible;" however, in the case of a lattice model we can use as a 
criterion the intermolecular energy equal to 

n l & ]  + n 2 E 2  + n3&3 + 
Here ni are positive integers and 
interaction energies between molecules and their contact points. 

= real numbers corresponding to assumed 
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12 J .  DUDOWICZ 

4 STATISTICAL INTERPRETATION OF ASSOCIATION 
EQUILIBRIUM CONSTANTS 

A comparison of Eqs. (3) and (13) allows one to express the equilibrium 
constants of reactions (1) in terms of the respective quantities dk 

Then, using the relation (9), we connect association constants with the 
canonical partition functions zk 

This is only as it should be, because theconstants refer to infinite dilution. The 
canonical partition function is represented by 

z k  = jk(T)js(T)-'*Qk; Qk = Gk(B)exp(-bEk) 

wherej,(T) and j A T )  are the internal partition functions of complex A, and 
molecule S ,  respectively, Qk = the configurational partition function ap- 
proximated by a lattice with one molecule Ak and ( B  - rk) molecules S ,  E ,  = 
the intermolecular potential energy referred to the pure S lattice and G,(B) = 
the number of configurations which one molecule At may take up  on a 
lattice of B sites. 

Therefore, under the following assumptions : 

i - I for open complexes 
i for cyclic complexes l )  jk(T) = jl(T)i exp(-bngOH), = 

where i denotes a number of molecule A ,  in one molecule Ak and 
energy of hydrogen bond. 

molecule are identical. 

Eqs. (14) become 

= the 

2) I contact points of the solvent and of the hydrocarbon part of alcohol 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
5
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



EQUILIBRIUM IN DILUTE ASSOCIATED SOLUTIONS 73 

where q = exp[-P(woH - woI - WHI)], wOH = - E~~ is related to as- 
sociation interaction of alcohol, woI = - cI1 are 
related to interaction of alcohol with solvent, cij is the energy of interaction 
between “i” and “ j”  contact points, gk = Gk/B = number of configurations 
of molecule Ak per one lattice site. 

Equations (15) and (16) show combinatorial factors appearing as an 
entropic contribution and the energy factor, determined here by the hydrogen 
bond energy and interaction energies between alcohol and solvent molecules. 
Formula (16) contains one q factor more than formula (1  5 )  because a cyclic 
r-mer has one hydrogen bond more than an open r-mer. Thus we obtain a 
possibility of calculating association constants if we can calculate the 
combinatorial factors gk. 

- cII and wHI = 

5 VlRlAL COEFFICIENTS OF THE SOLUTE-SOLVENT SYSTEM 

Now we seek the connection of the multicomponent description with 
McMillan-Mayer virial expansion for a solute A in a solvent S.  

Consider the well known activity expansion of the modified grand canon- 
ical partition function =* 

B N A ~  1 1 121 

1 + 1 QNAuNA = ~ b , d  
B 

The coefficients bL are the lattice cluster sums expressed in terms of con- 
figurational partition functions Q N A  

Bb1 = Q i  

Bb, = Q 2 .  - G>Q: 
B b 3  = Q 3  - Q 1 Q 2  + (3)Q: 
etc. 

and the configurational partition function is defined by 

Q N ~  = 1 G(E, N A ~  B)exPC-P(E - Ed1 
where G(E, N A ,  B )  denotes the number of configurations of a system com- 
posed of N, molecules A and ( B  - rA N A )  molecules S at the given energy E 
and for the given number of lattice sites 8, and E,  = the energy of  the pure S 
lattice. It follows from Eqs. (10) and (16) that 

E 

NA 1 
p = - = -  ( - ) = I l b , a ‘  

d l n u  B.T 121 
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14 J .  DUDOWICZ 

The corresponding density series for the thermodynamic potential, is 

where 

We can obtain the form of Eq. (17) from the “multicomponent” grand 
canonical partition function by using the equalities (8), (12) and grouping 
together terms with the same powers of a:. The activity a in Eq. (17) is the 
activity of monomers, a:, divided by the cluster coefficient bl .  In this way we 
find 

b, = b:($ + $) 
(19) 

where quantities d’s have been defined by Eqs. (9). Specializing, we have 

W N l  = 1)) 
B d, = 

(Z(Nl = 2) - (+)Z(Nl = 1)2) 

B dll = 

(Z(Nl = 1, N ,  = 1) - Z ( N ,  = l)Z(N, = 1)) 
B d , ,  = 
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EQUILIBRIUM IN DILUTE ASSOCIATED SOLUTIONS 75 

Using the definitions (13), Eqs. (19) may be rewritten as 

The substitution of Eqs. (20) in Eqs. (18) gives the connection of the virial 
coefficients of the density series with association constants 

As an explicit example let us consider a particularly simple case of one-energy 
association (i.e., cOO = EHH = cIl # and two interaction energies 

eOI) between the solvent and the chain molecules of alcohol. We have 
made some explicit calculations for Qi, bi, and pi for i 5 3. Several subsets of 
configurations appear in a natural way in the b i s  and their numbers are 
denoted by ga, gas, gasy. First, g1 is the number of configurations (per one 
lattice site) of one monomer (one alcohol molecule), g2 is for a dimer formed of 
two alcohol moecules connected by a hydrogen bond, g3 is for d linear trimer 
(three alcohol molecules with three hydrogen bonds) and g3c is for a cyclic 
trimer (three molecules with three hydrogen bonds). Then gll is the number of 
configurations of two monomers overlapping not completely (by not all 
segments), g‘, is of three monomer molecules overlapping simultaneously 
but not completely (so that the MayerJjis functions that are equal to - 1, - 1, 
- l), g‘; is of three monomer molecules overlapping not simultaneously and 
none of three pairs completely. Finally gI2 is a sum of all nonphysical 
configurations of three molecules, any two of which are in a configuration of 
a dimer. 

After tedious but straightforward calculations, r f s  can be expressed in terms 
of the g’s. Thus 

92 + (-91 - 911) - -- dl 1 
d:  s: 9: 

dl2 
d: s: 

- -- 

tl(g12 + 393, + 293) -= - 
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76 J. DUDOWICZ 

Now we can express p2 and B3 in terms of the 9's. Grouping together terms 
corresponding to  the association constants, defined in Eqs. (15), (16) and 
terms corresponding to athermal fl;Ih and &Ih, we finely obtain 

8 2  = K ?  - K z  + zh (21) 

p3 = K,"[KZ + K," - 2K," - 3K3,  - 2K3 + 4 K z  - 4z"] 

where 

and 

are the athermal virial coefficients, to which the virial coefficients reduce by 
putting all interaction energies E~~ equal to zero. Also tcZ, K ~ ,  K ~ ,  are the limit- 
ing values of association constants in an athermal solution, 

The dimerization constant corresponds to a nonathermal part of the second 
virial coefficient, which includes configurations of two bound alcohol 
molecules and no configuration of two non-bonded ones. Equation (21) can 
be rewritten as 

B z  - BYh = K ?  - (K?)ath- 

The trimerization constants ( K ? ,  K,",) appear in a nonathermal contribution 
to the third virial coefficient, which has no sihple interpretation and includes 
also overlapping configurations of two and three molecules, as is seen from 
the derivation of p3 above. 
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EQUILIBRIUM IN DILUTE ASSOCIATED SOLUTIONS 77 

6 ASSOCIATION CONSTANTS OF ALCOHOLS IN TWO 
DIMENSION LATTICE MODEL OF ALCOHOL SOLUTION 

Basing on formulas (15) and (16) an illustrative calculation was carried out 
for a certain two-dimensional model. This model assumes the square lattice 
( z  = 4) and the Barker model of alcohol m~lecule .~ Each molecule of non- 
polar solvent S occupies one lattice site and has z contact points, called I 
(inert) contact points. Each alcohol molecule has one terminal segment with 
( z  - I )  I contact points, ( r  - 2) segment with ( z  - 2) I contact points and one 
terminal OH segment which is supposed to have two 0 contact points and 
one H contact point. The H contact point is taken as the point in direction 
perpendicular to the C-0 bond. This model does ncjt predict cyclic trimers. 
The calculated values of KF and KY for several succesive n-alcohols from 
homology series are summarized in Table I. 

In an infinite dilute solution densities pk go into mole fractions xk and 
association constants expressed in mole fractions and in densities are equal 
(K," = K,"). So all values presented in Table I may be treated as K,". The 
association constants of alcohols, KF and KT, decrease with the increase of 
the number of carbon atoms in n-alcohol molecule. This fact can be under- 
stood qualitatively. The longer is the molecule of alcohol, the greater are the 
steric hinderances for the i-th alcohol molecule, which is to form a hydrogen 
bond with (i - 1) molecules and as a final effect the relative numbef,of 
configuration, g i / (g i -  lgl), decreases with the length of chain of n-alcohol 
molecule. If the molecules of secessive alcohols are represented on a lattice by 
rigid, non-flexible r-mers, the association constants K? and K Y  do not 
depend on the value of r (i.e., the number of carbon atoms in n-alcohol 
molecule). The dimerization and trimerization constants (for the same 
alcohol) differ very slightly (at most 15 %) and practically may be considered 
as equal. We can also see the influence of solvent on association constants. 
The association constants decrease with an increase of interaction between 
solvent and associating substance molecules, represented by energies h, 
and eHI. 

7 DISCUSSION 

:onsidering a lattice model for the dilute solutions of aliphatic alcohols in a 
ionpolar solvent we have derived in a statistical way the relations connecting 
issociation constants with the lattice cluster sums dk. Recently the similar 
:xpressions were obtained for gases and plasmas by Ebeling.' Ebeling 
reated a system composed of the successive complexes as a one component 
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EQUILIBRIUM IN DILUTE ASSOCIATED S.OLUTIONS 19 

system and used a division of the canonical partition functions Z ,  into the 
subsups corresponding to bound and to free states of N molecules. 

We' considered the alcohol solution in a nonpolar solvent as a multi- 
component system and we, conversely, group together terms with the same 
power of the activity of monomers. In this way we pass from the expansion of 
the logarithm of the multicomponent grand partition function to the virial 
expansion for a one solute-solvent system. We found the connections between 
the cluster sums and the virial coefficients (ofdensity and of the activity series) 
also introducing the association constants Kj". 

The introduction of the association constants into a statistical description 
of the system, without affecting the true values of partition functions, does not 
require any additional assumptions. The only concern is an unambiguous 
definition as to which configuration in a system is classified as a dimer, 
which-as a trimer and so on. Such definition is not always possible in 
general," but for the lattice model no difficulties with the division of the 
phase space are encountered. The association constants in a lattice model 
were expressed in terms of the lattice model parameters : combinatorial 
factors gn appearing as an entropic contribution and the energy factor 
determined by the association energy and the interaction energies between 
alcohol and solvent molecules. This straightforward statistical inteqketation 
of association constants has a practical significance because we can calculate 
them provided that the combinatorial factors g k  are known. 

As can be seen from Eqs. of §5, the reducible cluster sums bk occurring in the 
activity expansion as well as the irreducible cluster sums p k  occurring in the 
density expansion can be related to the association constants Kj", the limiting 
values of the association constants in an athermal system and cluster sums in 
a nonathermal system. First, no significant simplification is seen when com- 
paring bJb: with Bk. Secondly, the simplicity of the division of b,/b: = 8, is 
lost already for b3 (involving three molecules). The full expression for p3 
contains also an unwanted term with gI2. Therefore one can not hope for a 
simple representation of /?k into association contribution. 

Let us remark that a formal introduction of multimerization into the 
activity series, i.e., assigning all gas imperfections to chemical reactions, will 
lead in general to negative concentrations of some species A, .  The same, 
mutatis mutandis, applies to the osmotic pressure McMillan-Mayer virial 
expansion. 

The introduction of the lattice model allowed us to push calculations for 
enough to obtain a variety of results for the association constants, which were 
discussed in details in $6. Although the lattice model is not a good approxima- 
tion to the liquid state in any sense, it did reveal already some interesting 
trends and regularities. In a forthcoming paper we expect to extend our 
calculations to several different representations of the assumed mode of 
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association. In particular, we hope to discuss the cyclic associates and 
corqpare the simple lattice models with a multisite model which attempts at 
keeping the stereochemistry of CH,OH relatively undistorted. 
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